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in (36) and (37) leads to more accurate results in and
near the operating band of the transformer than would
the exact formula for p I G0

AprpENDIX 1

The following simplified method of calculating the a,.
values was developed for antenna-array applications by
Ross E. Graves in an as yet unpublished report. It is
adapted here with his permission for the stepped-
transformer case.

TABLE 1V
COMPUTATION OF RELATIVE ¢, VALUES FOR p=1.40

n=1 2 ,

=2 3.864

n=3 | 27.861 14.930

n=4 161.48 57.690
etc.

To employ Graves’ method, it is necessary to con-
struct a numerical table by a simple recursion procedure.
To illustrate the method, a typical table is given above
in Table IV for the case of p =1.40, ¢; =75.0 degrees. In
the upper left-hand corner always insert the number two
for any value of p. In the second column, second row,
always insert
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Xy = ——
COS ¢y

For this example, xg=1/cos 75 degrees=3.864. Then
fill in the table by means of the following rules until the
desired value of # is reached.

1. To find an additional entry in the first column,
multiply the element on the right just above by 2x, and
then subtract the element in the second row above the
entry to be found.

2. To find an additional entry in any other column,
add the two elements on the left and right just above
and multiply by xo, and then subtract the element in the
second row above the entry to be found.

3. Where an element is absent, assume it to be zero.

The illustrative table has been filled up to # =4. The
elements in the table are in the ratio of the a,, constants,
the first column corresponding to the center of the trans-
former. For example, for n=3,

aiiasias = 14.930:27.861:14,930 = 1:1.8661:1
and for n =4,
a1 @2iazias = 57.690:161.48:161.48:57.690
= 1:2.799:2.799:1.

The table could be carried, if desired, to any value of
n, no matter how large.

The Use of Scattering Matrices in Microwave Circuits
E. W. MATTHEWS, JR.}

Summary—Difficulties arising from the use of the impedance
concept in microwave circuitry have led to the introduction of the
scattering representation for work at these frequencies. This paper
presents a development of the scattering approach in terms of funda-

mental transmission-line phenomena. The physical meaning of the"

quantities involved is brought out wherever possible and the relation-
ships among the various elements of the scattering matrix are given.
Several examples of the application of scattering techniques to
analysis of the properties of microwave junctions are presented,
and methods for measuring scattering parameters of such junctions
are outlined.

INTRODUCTION
EN CONVENTIONAL circuit theory, the funda-

mental quantities of interest are voltages and cur-
rents, and the parameters used to express relation-
ships between them are called impedances or admit-
tances. A single two-terminal circuit element may be
characterized by a complex impedance, representing the
ratio between the voltage and the current at its two

T Sperry Gyroscope Company, Great Neck, N. Y.

terminals. The real part of this impedance (resistance)
is related to the power dissipated in the circuit element,
while the imaginary part (reactance) is a measure of the
average energy stored in the element.

More complicated multi-terminal networks may be
represented at a given frequency by an “equivalent
circuit” consisting of a number of simple two-terminal
elements in certain combinations or configurations, such
as equivalent tee, pi, or ladder networks. The properties
of such networks may alternatively be described in
terms of generalized impedance (or admittance) rela-
tionships between terminals (or “ports,” as currently
named). This description is better understood generally
in terms of the “self” and “mutual” impedances com-
monly used in coupled-circuit analysis as well as the
“transfer” impedances appearing in vacuum-tube cir-
cuitry.

At microwave frequencies, certain difficulties are en-
countered in the application of conventional low-
frequency circuit analysis techniques. As circuit dimen-
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sions become comparable to the wavelength, currents at
opposite ends of a single impedance element begin to
differ in magnitude and phase, and it becomes difficult
to specify the scalar potential difference between two
terminals uniquely, so that the very definition of an
impedance becomes ambiguocus. This difficulty is cir-
cumvented to some extent by the use of transmission-
line theory, which in essence takes account of longi-
tudinal variations in current and voltage, while restrict-
ing transverse dimensions to small fractions of a wave-
length, as usually assumed for coaxial or two-wire lines.
The treatment of hollow waveguides progresses one
additional step, in seeking to account for the transverse
distribution of currents and electric and magnetic fields
from fundamental electromagnetic theory. Furthermore,
the existence of higher “modes” in the region of discon-
tinuities on transmission lines, such as are inevitably
associated with terminating impedances and other cir-
cuit elements, requires the use of characteristic reference
planes located some distance from the actual discon-
tinuities (usually one or more half-wavelengths). The
specification of the properties of a microwave network
in terms of impedances or admittances in the face of
such difficulties is at best laborious, and certainly tends
to obscure the more important properties amid the alge-
braic relations which ensue. One is thus led to look for
simpler and more refined analysis techniques for han-
dling microwave circuits; such techniques are provided
naturally by the use of the scattering representation.

THE SCATTERING REPRESENTATION

Scattering coefficients were apparently first men-
tioned by Campbell and Foster! in 1922, and have re-
cently been more completely exploited for microwave
and transmission-line problems,?? as well as for general
network theory.? Their use grew naturally from a physi-
cal interpretation of one solution to the standard trans-
mission-line differential equations for the voltage and
current as a function of distance along such a line. These
equations are:

azv dazr
ax? ax?

and, with the usual harmonic time dependence, the
solutions are:

V{x, 1) = Ae-votiot |- Beretiot

= 'yZV

=7 (1)

1
I(s,8) = - (Aererist — Beresio, ©)

where v is the complex propagation constant, made up

! G. A. Campbell and R. M. Foster, “Maximum output network
for telephone substation and repeater circuits,” Trans. AIEE, vol,
39, pp. 231-280; 1920.

2 C. G. Montgomery, R. H. Dicke, and E. M. Purcell, “Principles
of Microwave Circuits,” Radiation Lab. Ser., vol. 8, McGraw-Hill
Book Co., Inc., New York, N. Y., 1947.

3 N. Marcuvitz, “The Waveguide Handbook,” Radiation Lab.
Ser., vol. 10, McGraw-Hill Book Co., Inc., New York, N. Y.; 1951.

¢ H. J. Carlin, “An Introduction to the Use of the Scattering
Matrix in Network Theory,” Microwave Res. Inst., Rep. R-366-54,
PIB-30; 1954,
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of a real part a, known as the attenuation constant, and
an imaginary part f, called the phase factor and equal
numerically to 2x/N - Z, is known as the characteristic
impedance of the transmission line, and is related to its
physical dimensions. Separating the exponential factor
in (2) into real and imaginary parts yields:

V(x, t) —_ Ae—aze](wt—ﬁx) + Beaxej'(wt+ﬁx)

ZI(x, {) = Aeesei@i=fn) — Beargitaito)

3)

It is apparent from an examination of the phase fronts,
represented by (wf+8x)=constant, that this solution
represents a pair of waves traveling in opposite direc-
tions on the transmission line with a velocity v =w/8 and
an exponential attenuation, or decrease in amplitude, in
the direction of propagation.

These two traveling waves may alternatively be
chosen as the independent variables for the transmission
line problem, and defined as follows:

Ax, t) = Aemretiot = V(x, §) + ZI(x, 1)
B(x, t) = Bevetiot = V(x, t) — ZI(x, 1). (4)

In general, 4 and B will both be cor;lplex quantities be-
cause of the arbitrary phase relations which may exist
between V and I. A(x, t) may be identified as the com-
ponent wave traveling in the -+x direction, and B(x, f)
as the wave traveling in the —x direction; both have the
dimensions of a voltage.

For reasons which will appear later, it is more con-
venient to use a normalized form for component waves;
this normalization is usually on a power basis. Thus if
we consider a line with matched termination at x=s, so

Vs, t) B
I(s, 2 B

it may be seen from (4) that B(x, ) =0. The power dissi-
pated in the matched termination is given by:

| V(s, 1) |2 _ [ A(x, 0 |2
27, 87,

(the factor § is necessary since we are essentially dealing
with peak values). It is evident that a wave of given
amplitude (or voltage) thus represents a rate of power
flow which depends upon the characteristic impedance
Z. of the line on which it exists. In order to avoid this
situation, we need only redefine the component waves
in terms of the power which they represent, i.e., set
P=%'a(x, z‘)[2 in (5). Thus we define the normalized
component waves as follows:

(3]

P:

(5

1 V(a0 _
a(x, 1) = ?[ 7 + VZ.I(x, t)]
11 V(x, 8 ___
b, &) = 7[ O - vz o} )

Consequently, the power being propagated in the +x
direction is given simply by %[a] 2= (3)aa* (a* is the
complex conjugate of @), and the power being propa-
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gated in the —x direction is (3)5b*. These normalized
waves have the dimensions of +/P, and represent peak
values.

In the usual transmission-line circuit, one of the com-
ponent waves is excited by means of a generator, and so
is known as the primary or incident wave; the other
arises by reflection, or “scattering,” from one or more
discontinuities, or a mismatched termination. This
separation of “cause and effect” is complete only in the
case of a matched generator; otherwise, re-reflection
takes place, creating an auxiliary primary wave.

The consideration of transmission lines in terms of
traveling waves facilitates understanding of a phenome-
non known as “standing waves.” This phenomenon is
nothing more than interference between the two com-
ponent waves, producing successive stationary maxima
and minima of the voltage and current along the line.
The maxima occur where the two waves are in-phase,
and the minima where they are out-of-phase. The ratio
of the two is known as the voltage standing wave ratio,
or vswr. If a(x, t) is defined as the incident wave and
b(x, t) the reflected, the vswr, p, is given by:

el + 18|
ol = 2]

Thus if 5=0, i.e., no reflection, then p=1.0. The im-
portance of this quantity may be appreciated from the
fact that microwave impedance measurements are
usually made in terms of the magnitude and position of
the standing waves produced.

(N

p

SCATTERING MATRICES

The use of traveling waves in describing transmission-
line phenomena naturally leads to a scattering represen-
tation for the properties of transmission-line junctions.
Whereas the impedance concept attempts to relate
voltages and currents existing at the various junction
ports, the scattering approach leads to a relationship be-
tween the incident and reflected waves at these ports.
It seemis logical to treat the incident waves as the inde-
pendent quantities; we shall denote these as a,, and ex-
press their contributions to the reflected or outward-
traveling wave &, at port # by a series of scattering co-
efficients, as:

by = Suai + Speae + - - - Sintn
by = Saraq + Seeas + - - - Sontn

I‘)n = Snlal '+' SnZGQ + AR Snr:an (8)

The justification for such a procedure is directly de-
pendent upon the theory of linear superposition, just as
is the corresponding impedance or admittance pro-
cedure.

Egs. (8) may be formally reduced to a single equation
by making use of a branch of mathematics known as
matrix algebra. Observing the orderly nature of equa-
tions (8), we may group similar terms together in a form
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known as a “matrix,” which is nothing more than an
orderly array of such terms, and preserve the original
equations intact by properly defining the rules for the
manipulation of such matrices. Thus (8) may be written:

b S S-S [ @
b Sar Saz - Sa az
L bn LSnl Sn2 v Snn l;n

which may be shortened to the symbolic matrix cqua-
tion:

b = Sa. (10)

The simplification is evident. The mechanics of handling
matrix equations are found in numerous textbooks,’ but
need not concern us here; our primary interest is in the
elements of the scattering matrix, the scattering co-
efficients themselves, and in certain theorems relating
to them.

The simplest junction which we may consider is the
one with the fewest ports, namely one; this may be
identified with what is usually called a load or termina-
tion. In this case, the scattering matrix consists of a
single term, Sy1, whose definitions is obviously Sy =b:1/a;.
This, however, is just the usual definition of a reflection
coefficient I', which is frequently used to characterize a
microwave termination, and which is related to the load
impedance Zy, (or admittance Y1) by:
by Zp—Z., Y.—YL

Spu=Ty=—

= = . (11)
ay ZL + Zc Yc "l_ I/L

This is also the quantity which is plotted in polar co-
ordinates on the familiar Smith chart. Thus a matched
load, Z;,=Z., is represented by Sy =T =0, emphasizing
the fact that a matched load by definition produces no
reflection.

In order to understand the physical significance of the
scattering-matrix elements which represent a multi-port
junction, one need only consider a special case for which
the scattering equations reduce to a simplified form.
Thus if power is fed into a multi-port junction from the
nth port, and all other ports are connected to matched
loads, @, will be the only incident wave, and the scat-
tered or reflected waves emerging from each port will be,
from (8):

b1 = Sinln
b2 = S2nan
I;n = Snnln. (8&)

Thus it is apparent that S,. is the reflection coefficient
seen looking into the nth port, with all others termi-
nated in matched loads, while S,..(m#n) represents the

5 See L. A. Pipes, “Applied Mathematics for Engineers & Physi-
cists,” McGraw-Hill Book Publishing Co., Inc., New York, N.Y.; 1946.
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amplitude of the wave coupled out of the mth port for
a unit incident wave at port #, under the same matched
conditions. Since a normalized representation is being
used, the corresponding coupled power relation may be
written:

P (out)  30nbn*
P, (in)

= SmnSmn* == ’ Smn 12- (12)

1
ianan*

CONDITIONS IMPOSED UPON THE SCATTERING MATRIX

Inasmuch as a scattering matrix is intended to repre-
sent the properties of a physical microwave junction,
certain relationships exist within the scattering matrix
as a result of the familiar laws of reciprocity and con-
servation of energy. Actually, the fact that the scatter-
ing matrix can be derived from the familiar impedance
or admittance matrix for the same junction assures that
this is so. This derivation can be developed? from the
definition of the normalized component waves in (6) in
terms of terminal voltages and currents, to yield the
relationship:

S=Z-DZ+D)1=01-")1+ V). (13)

A slightly modified form would result from the use of
non-normalized waves in (4).

The condition of reciprocity requires that the Z and
Y matrices be symmetrical, and consequently .S must be
symmetrical from (13). This is represented by Sy, = .Sun.
This is true, however, only for a normalized representa-
tion as in (6); the simplification which results from a
symmetrical scattering matrix is therefore the justifica-
tion for the normalization.

Conservation of energy as applied to a transmission
line junction may be expressed in a more general form
from Poynting’s energy theorem for a periodic field® as:

ST VLI* = 2P + 4jo(Wuy — Wg), (14)
which in traveling-wave form, from (4), becomes
> (an + b)(a* — b,*) = 2P + 4jo(Wx — Wg), (15)

n

where P is the power dissipated in the junction, and
W and Wy are the average stored magnetic and electric
energies, respectively. The real part of (15) is:

> (@nan® — byby*) = 2P. (16)
This may be expressed in matrix notation as:
a(l — SS%)a* = 2P. an
The requirement that P20 imposes the condition:
det (1 — 55%) = 0. (18)

For the special case of a lossless junction, which is

frequently approximated in practice, P =0, and
' 1—55%=0 (19)

¢ Montgomery, Dicke and Purcell, 0p. cit., pp. 132, 139, 148.
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or
571 = 5% = 8% (20)

This is the definition of what is known as a unitary
matrix, which has the special property that:

ZSKmSKn* e = {1 form =n 1)
& 0 form # n.
For m =, this becomes:
;sKme* = ; | Sxm[* =1, (22)

which can be identified from (12) as just the condition
for conservation of energy.

APPLICATIONS OF SCATTERING MATRICES
Section of Transmission Line

Suppose we wish to obtain the scattering matrix of a
two-port junction consisting of a section of uniform loss-
less transmission line of length L, as shown in Fig. 1.
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Fig. 1—Transmission-line section.

This is assumed to be a continuation of a similar trans-
mission line connected to both pairs of terminals. The
terminal planes are defined as shown. From the previ-
ously-indicated solution to the general transmission-line
equations, it is apparent that a; and b, are related by a
simple factor of the form e /L neglecting attenuation,
and similarly a; and b;. In fact

b2 = e"]‘ﬂLal (23)

and b = ¢ #Lg,,

so that the scattering matrix equation is as follows:

< bl) 0 g~ 8L ax
ba <e—”ﬂ‘ 0 >(a?> '
From the simplicity of this result, it is apparent that
a change in the specified location of the terminal planes
of an arbitrary junction will affect only the phase of the
scattering coefficients of the junction. In particular, if
terminal-plane # is moved away from the junction a
distance L, each of the scattering coefficients .S,., or Sum
involving z will be multiplied by the factor ¢=#Z, while
San will involve two such factors and will be changed by
a factor e=%#L,

(24)

Lossless Two-Port Junction

Certain general statements can be made about any
lossless two-port junction, regardless of its form, merely
as a result of the conditions specified previously. Such
a junction may be a transition between two types of
transmission lines, as shown in Fig. 2 (opposite).
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From reciprocity and (22) we may write:

| Sul24 | Swl2 =1
| Sor |2+ | Sez|2 =1
Si2 = S (25)
Consequently, we may immediately conclude that:
[Su] = [Sa]. (26)

Thus it is apparent that the reflection coefficient is the
same looking into either terminal with a matched load
on the other, since under these conditions,

1 [Sal 14 [Se
T— 15111 1 1S22

p1 = = pa. (27)

Furthermore, the fraction of the power reflected is:

Preflected

= | Suly (28)

Pincident
while the insertion loss due to reflection is given by:

L= —101logi (1 — |Su|?» = — 20logi | Siz|. (29)

This latter form is valid also for a lossy junction, and
includes the dissipation loss.

Fig. 2—Waveguide to coax adapter.

If now a load with reflection coefficient I'y is connected
to terminals 2,

as

Pz = — or a9 = szg, (30)
by
and (8) can be solved simultaneously to yield the input

reflection coefficient

1 512’2
— = Su

TR 31
a 1 — SQQPQ ( )

These relations are also completely general, and hold for
a lossy junction as well.

The use of a sliding mismatch for evaluating junction
parameters is easily understood from the above rela-
tions. A sliding mismatch is merely a slightly mis-
matched termination whose reflection coefficient can be
varied, in phase only, by sliding along the transmission
line. From (31), it can be seen that as the phase of I'z is
changed, the input reflection coefficient will exhibit
maxima and minima corresponding to the in-phase and
out-of -phase conditions of the second term with respect
to Sy (it must be assumed that SeI'»<<1). Under these
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conditions,
by

(—) >~ S+ 1 S12°Ty
a1/ max

by
— =Su— |S122P2],
@1/ min

from which Su, | S|, and [T
(25).

(32)

can be determined by

Lossy Two-Port Junction

The scattering matrix for a lossy junction is not uni-
tary, so the relations (21) and (22) do not hold, but may
in general be replaced by:

> Skl < 1. (33)
K

This is apparent from an extreme case suggested by
Fig. 3, consisting of a resistance and a large condenser
connected across a transmission line one-quarter wave-
length apart. If R=Z, and wC>Z, the condenser will
appear like a short-circuited quarter-wave stub across
R, and will have very little effect; thus the junction will
appear well-matched at terminals 1 regardless of the
termination on 2, so Su<1 and S;»<<1. The input at 2
will be essentially a short-circuit, regardless of the termi-
nation on 1, so S»=—1 and Suy<K1. Apparently, then,

| Sul 5 | Sael
| Sulr4 [ SelPk1
|S21 ? 4 1522lzg1. 3%)

However, the reciprocity relation Sia= Sy still holds.

This case is typical of a resistive microwave network,
and is indicative of the fact that such a network may not
be equally well-matched in both directions, such as a
resistance card tapered on one end only.

| 2

A8

Fig. 3—Lossy two-port junction.
Multi-Port Lossless Junctions

An extension of the scattering representation to multi-
port junctions, together with full use of the reciprocity
theorem, the unitary relations of (21) as applicable to
a lossless junction, and conditions resulting from physi-
cal symmetry, will lead to a remarkable array of results
without further information about the junction. The
degree of losslessness and symmetry are frequently suf-
ficient to justify the use of such assumptions, which
greatly simplify the analytical results.

A very interesting application of these techniques can
be made with regard to a waveguide “Magic-Tee,” or
side-outlet tee.” This device consists of a combination of

7 C. G. Montgomery, “Technique of Microwave Measurements,”

Radiation Lab. Ser., vol. 11, McGraw-Hill Book Co., Inc., New
York, N. Y.; 1947,
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an E-plane and an H-plane waveguide tee arranged as
shown in Fig. 4. The properties of this junction may be
represented by a 4X4 scattering matrix, with a total of
16 terms. The number of independent terms is reduced
to 10 by the reciprocity relations. Furthermore, sym-
metry of the junction requires that Siz =S, Suu= — S,
and S;; =S, leaving the following seven terms:

Su Sz S Su)
S S Sz =S
12 1 13 ) (35)
Sz Sz S 534J
[ S1e =S Sae Sy

From (21) with m =3, n=4, and using the above matrix
(35),

S15514* — S15514F + S33534* + 5354 = 0. (36)

Fig. 4—Waveguide magic-tee.

Since Ss3 and Sy are inherently independent, this equa-
tion can be satisfied only with S3; =0, showing that there
is no direct cross-coupling between the side arms of the
tee. Because of this independence between the side arms,
separate matching structures may be employed in each
of these arms to produce (at least for a single frequency)
matched inputs (Ss; =S, =0). Under these conditions,
and with S5, =0, applying (22) to the matrix (35) vields:

| Sul2+ [ Swel2+ [ Sulr+ | Sult=1
2|S13]2=1
2 ‘ 814!2 = 1. (37)

From this we may conclude that ISlg{ = | S| =1/42,
and Sy =Sy =S12=0. Thus matching of the side arms
automatically produces matching of the symmetrical
arms, as well as decoupling between them. These are the
conditions which are assumed to prevail in a truly
“magic” tee, also known as a bi-conjugate network. The
scattering matrix thus reduces to,

0 0 1 1)
110 0 1—1
Vi1 1 0 o

1-1 0 o

; (38)

assuming the proper choice of terminal planes.
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Further use can be made of the scattering representa-
tion to evaluate, as in (31), the outputs from the various
arms with arbitrary terminations on each, as necessary
for understanding the performance of the unit under
actual operating conditions, such as for use in an im-
pendance bridge or a balanced mixer.

MEASUREMENT OF THE SCATTERING COEFFICIENTS OF A
MICROWAVE JUNCTION

Measurement of the actual values of the scattering
matrix elements representing a particular microwave
junction, especially a multi-port junction, may be quite
difficult. The procedure usually used is basically the
same as that employed at lower frequencies, consisting
of measuring the input impedances or reflection co-
efficients at one or more ports with specified termina-
tions on the other. Substitution of the results of such
measurements into a set of equations similar to (31)
vields the desired parameters. The process of finding the
scattering coefficients is considerably simplified if well-
matched loads are available for all ports; this however,
may be an unknown condition in itself, especially in the
case of a transition from a measuring section to another
transmission line. A short-circuit termination may also
be used, since a good short-circuit may be easily
achieved in most types of transmission line; and if it is
located a specific distance from the actual terminal plane
of the junction, the short-circuit may be used to simu-
late any magnitude of reactive termination.

A procedure known as “Deschamps’ Method”%?® has
been devised for measuring the scattering coefficients of
a two-port junction using four short-circuit termina-
tions separated a quarter-wavelength apart in pairs (or
alternatively, a sliding short-circuit set at these posi-
tions). Measurement of the input reflection coefficients
at one port only with each of the four terminations on
the other port are required, and the results are obtained
from a very simple graphical construction. The method
is easily applied to the direct measurement of unknown
impedances through such a junction, and may be ex-
tended to multi-port junctions with additional measure-
ments. It also permits a simple evaluation of experi-
mental errors from the results of additional measure-
ments.

Another method for the measurement of junction
parameters which has been developed is known as the
“Weissfloch Tangent” technique.'® Its use results in the
more direct evaluation of the impedance matrix or the
equivalent circuit elements. The relative merits of the
two methods have been discussed elsewhere.!!

8 G. A. Deschamps, “Determination of reflection coefficients and
insertion loss of a waveguide junction,” Jour. Appl. Phys., vol. 24,
pp. 1046-1050; August, 1953.

9 J. E. Storer, L. S. Sheingold, and S. Stein, “A simple graphical
analysis of a two-port waveguide junction,” Proc. IRE, vol. 41, pp.
1004-1013; August, 1953.

10 Marcuvitz, op. cit., pp. 130-138.

U L. B. Felsen and A. A. Oliner-S. Stein, L. S. Sheingold, and
J. E. Storer, Proc. IRE, vol. 42, pp. 1447-1448; September, 1954.



