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in (36) and (37) leads to more accurate results in and

near the operating band of the transformer than would

the exact formula for p I ~=O.

.~PPENDIX II

The following simplified method of calculating the am

values was developed for antenna-array applications by

Ross E. Graves in an as yet unpublished report. It is

adapted here with his permission for the stepped-

transforrner case.

TABLE IV

COMPUTATION OF RELATIVE a,,, VALUES FOR p = 1.40
—

n=l 2
~=z 3.’864
)1= 3 27.861 14.930
)2=+ 161.48 .57.690
etc.

To employ Graves’ method, it is necessary to con-

struct,3 numerical table by a simple recursion procedure.

To illustrate the method, a typical table is given above

in Table IV for the case of P = 1.40, @l= 75.0 degrees. In

the upper left-hand corner always insert the number two

for any- value of p. In the second column, second row,

always insert

.
1

X()= —-.
Cos +1

For this example, *O= l/cos 75 degrees= 3.864. ‘Then

fill in the table by means of the following rules until the

desired value of n is reached.

1. To find an additional entry in the first column,

multiply the element on the right just above by 2X0 and

then subtract the element in the second row above the

entry to be found.

2. To find an additional entry in any other col!umn,

add the two elements on the left and right just a hove

and multiply by xO, and then subtract the element in the

second row above the entry to be found,

3. Where an element is absent, assume it to be zero.

The illustrative table has been filled up to n =4. The

elements in the table are in the ratio of the am constants,

the first column corresponding to the center of the t rans-

former. For example, for n =3,

al:az:at = 14.930:27.861:14.930 = 1[: 1.8661:1

and for n =4,

al:az:a3:a4 = 57.690 :161.48:161.48:57.690

= 1:2.799:2.799:1.

The table could be carried, if desired, to any va] ue of

n, no matter how large.

The Use of Scattering Matrices in Microwave Circuits

E. W. MATTHEWS, JR.~

Summarg-Difficulties arising from the use of the impedance

concept in microwave circuitry have led to the introduction of the
scattering representation for work at these frequencies. This paper
presents a development of the scattering approach in terms of funda-
mental transmission-line phenomena. The physical meaning of the
quantities involved is brought out wherever possible and the relation-
ships among the various elements of the scattering matrix are given.
Several examples of the application of scattering techniques to
analysis of the properties of microwave junctions are presented,
and met hods for measuring scattering parameters of such junctions

are outlined.

lNTRODUCrION

I

IS CONVENTIONAL circuit theory, the funda-

mental quantities of interest are voltages and cur-

rents, and the parameters used to express l-elation-

ships between them are called impedances or admit-

tances. A single two-terminal circuit element may be

characterized by a complex impedance, representing the

ratio between the voltage and the current at its two
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terminals. The real part of this impedance (resists rice)

is related to the power dissipated in the circuit element,

while the imaginary part (reactance) is a measure c}f the

average energy stored in the element.

More complicated multi-terminal networks may be

represented at a given frequency by am “equivalent

circuit” consisting of a number of simple two-terminal

elements in certain combinations or configurations, such

as equivalent tee, pi, or ladder networks. The properties

of such networks may alternatively be described in

terms of generalized impedance (or admittance) rela-

tionships between terminals (or “ports,” as currently

named). This description is better understood generally

in terms of the “self” and “mutual” impedances com-

monl~’ used in coupled-circuit analysis as well as the

“transfer” “Impedances appearing in vacuum-tube cir-

cuitry.

At microwave frequencies, certain dif%culties are en-

countered in the application of conventional low-

frequency circuit analysis techniques. As circuit dimen-
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sions become comparable to the wavelength, currents at

opposite ends of a single impedance element begin to

differ in magnitude and phase, and it becomes difficult

to specify the scalar potential difference between two

terminals uniquely, so that the very definition of an

impedance becomes ambiguous. This difficulty is cir-

cumvented to some extent by the use of transmission-

line theory, which in essence takes account of longi-

tudinal variations in current and voltage, while restrict-

ing transverse dimensions to small fractions of a wave-

length, as usually assumed for coaxial or two-wire lines.

The treatment of hollow wave.guides progresses one

additional step, in seeking to account for the transverse

distribution of currents and electric and magnetic fields

from fundamental electromagnetic theory. Furthermore,

the existence of higher “modes” in the region of discon-

tinuities on transmission lines, such as are inevitably

associated with terminating impedances and other cir-

cuit elements, requires the use of characteristic reference

planes located some distance from the actual discon-

tinuities (usually one or more half-wavelengths), The

specification of the properties of a microwave network

in terms of impedances or admittances in the face of

such difficulties is at best laborious, and certainly tends

to obscure the more important properties amid the alge-

braic relations which ensue. One is thus led to look for

simpler and more refined analysis techniques for han-

dling microwave circuits; such techniques are provided

naturally by the use of the scattering representation.

THE SCATTERING REPRESENTATION

Scattering coefficients were apparently first men-

t ioned by Campbell and Foster-l in 1922, and have re-

cently been more completely exploited for microwave

and transmission-line problems, 28 as well as for general

network theory.4 Their use grew naturally from a physi-

cal interpretation of one solution to the standard trans-

mission-line differential equations for the voltage and

current as a function of distance along such a line. These

equations are:

Sj,v &I

——

&ff2
= 72V — = ‘#r

dX2
(1)

and, With the usual harmonic time dependence, the

solutions are:

V(z, t) = Ae–~”+~”t + Be~”+~@~

I(a?, t) = # (Ae–~z+~”t — Be~z+f@t), (2)
c

where -y is the complex propagation constant, made up

1 G. A. Campbell and R. M. Foster, “Maximum output network
for telephone substation and repeater circuits, ” Tram-. A .lEE, VO1.

39, pp. 231-280; 1920.
2 C. G. Montgomery, R. H. Dicke, and E. M. Purcell, ‘tPrinciples

of Microwave Circuits, ” Radiation Lab. Ser., VO1. 8, McGraw-Hill

Book Co., Inc., New York, N. Y., 1947.
3 N. Marcuvitz, “The Waveguide Handbook, ” Radiation Lab.

Ser., vol. 10, McGraw-Hill Book Co., Inc., New York, N. Y.; 1951.
4 H. J. Carlin, “An Introduction to the Use of the %attering

Matrix in Network Theory, ” Microwave Res. Inst., Rep. R-366-54,
PIB-30: 1954.

of a real part a, known as the attenuation constant, and

an imaginary part ~, called the phase factor and equal

numerically to 2~/A . Z. is known as the characteristic

impedance of the transmission line, and is related to its

physical dimensions. Separating the exponential factor

in (2) into real and imaginary parts yields:

V(X, ~) = Ae–~~e~(@t–@z) + Be.zej(of+@z)

ZJ(X, t) = Ae–~ze~t@’–~xj – Bea’e~t@’+@’). (3)

It is apparent from an examination of the phase fronts,

represented by (cot+ @x) = constant, that this solution

represents a pair of waves traveling in opposite direc-

tions on the transmission line with a velocity v = u/~ and

an exponential attenuation, or decrease in amplitude, in

the direction of propagation.

These two traveling waves may alternatively be

chosen as the independent variables for the transmission

line problem, and defined as follows:

A (z, t) = Ae-~z+~’J’ = V(x, t) + 2,1(x, t)

B(x, t) = lle~’+)”’ = V(x, t) – ZCI(X, i!). (4)

In general, A and B will both be complex quantities be-

cause of the arbitrary phase relations which may exist

between V and I. A (x, t) may be identified as the com-

ponent wave traveling in the +x direction, and B(x, t)

as the wave traveling in the — x direction; both have the

dimensions of a voltage.

For reasons which will appear later, it is more con-

venient to use a normalized form for component waves;

this normalization is usually on a power basis. Thus if

we consider a line with matched termination at x =s, so

V(s, t)
— = z,,
1(s, t)

itmay be seen from (4) that B (x, t) = O. The power dissi-

pated in the matched termination is given by:

~ = I v(~! 01’ = J~(%t)]z
2ZC 8Z6

(5)

(the factor ~ is necessary since we are essentially dealing

with peak values). I t is evident that a wave of given

amplitude (or voltage) thus represents a rate of power

i-low which depends upon the characteristic impedance

Z. of the line on which it exists. In order to avoid this

situation, we need only redefine the component waves

in terms of the power which they represent, i.e., set

P = ~ I U(X, f) 12 in (5). Thus we define the normalized

component waves as follows:

1 V(X, t)
b(~, t) = ~

[ 1— –da(x,t).dz (6)

Consequently, the power being propagated in the +x

direction is given simply by ~ I a 12 = (~)aa* (a* is the

complex conjugate of a), and the power being propa-
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gated in the –x direction is (i)bb*. These normalized

waves have the dimensions of @, and represent peak

values.

In the usual transmission-line circuit, one of the com-

ponent waves is excited by means of a generator, and so

is known as the primary or incident wave; the other

arises by reflection, or ‘(scattering, ” from one or more

discontinuities, or a mismatched termination. This

separation of “cause and effect” is complete only in the

case of a matched generator; otherwise, re-reflection

takes ,place, creating an auxiliary primary wave.

The consideration of transmission lines in terms of

traveling waves facilitates understanding of a phenome-

non known as “standing waves. ” This phenomenon is

nothing more than interference between the two com-

ponent waves, producing successive stationary maxima

and minima of the voltage and current along the line.

The maxima occur where the two waves are in-phase,

and the minima where they are out-of-phase. The ratio

of the two is known as the voltage standing wave ratio,

OS-vswr. If a(x, t) is defined as the incident wave and

b (x, t) the reflected, the vswr, p, is given by:

(7)

Thus if b=O, i.e., no reflection, then p = 1.0. The im-

portance of this quantity may be appreciated from the

fact that microwave impedance measurements are

usually made in terms of the magnitude and position of

the standing waves produced.

SCATTERING MATRICES

The use of traveling waves in describing transmission-

line phenomena naturally leads to a scattering represen-

tation for the properties of transmission-line junctions.

Whereas the impedance concept attempts to relate

voltages and currents existing at the various junction

ports, the scattering approach leads to a relationship be-

tween the incident and reflected waves at these ports.

It seenis logical to treat the incident waves as the inde-

pendent quantities; we shall denote these as am, and ex-

press their contributions to the reflected or outward-

traveling wave b. at port n by a series of scattering co-

efficients, as:

bl = SIlal -1- S12az -1- “ “ “ S1.a.

bj = S,,al + S~zaz + . . . SZ.a.

. .

b.= Snlal + Sn2a2+ “ “ “ S.nf-h (8)

The justification for such a procedure is directly de-

pendent upon the theory of linear superposition, just as

is the corresponding impedance or admittance pro-

cedure.

Eqs. (8) may be formally reduced to a single equation

by making use of a branch of mathematics known as

matrix algebra. Observing the orderly nature of equa-

tions (8), we may group similar terms together in a form

known as a “matrix,” which is nothing more than an

orderly array of such terms, and preserve the original

equations intact by properly defining the rules for the

manipulation of such matrices. Thus (8) may be written:

(9)

which may be shortened to the symbolic matrix equa-

tion:

b = Sa. (lo)

The simplification is evident. The mechanics of handling

matrix equations are found in numerous textbooks.5 but

need not concern us here; our primary interest is in the

elements of the scattering matrix, the scattering co-

efficients themselves, and in certain theorems relating

to them.

The simplest junction which we may consider is the

one with the fewest ports, namely one; this may be

identified with what is usually called a load or termina-

tion. In this case, the scattering matrix consists of a

single term, S11, whose definitions is obvicmly & = &/aI.

This, however, is just the usual definition of a reflection

coefficient I’, which is frequently used tc) characterize a

microwave termination, and which is related to the load

impedance Z~ (or admittance YL) by:

bl zL – Z. ye .– YL
sll=rl=—= — —— .

ZL+ZC– Y.-+Y~
(11)

al

This is also the quantity which is plotted in polar co-

ordinates on the familiar Smith chart. Thus a matched

load, ZL = Z,, is represented by SU = F1 = 0, empha~~izing

the fact that a matched load by definition produces no

reflection.

In order to understand the physical significance t)f the

scattering-matrix elements which represent a multi-port

junction, one need only consider a special case for which

the scattering equations reduce to a simplified form.

Thus if power is fed into a multi-port j unction from the

nth port, and all other ports are connected to ma Itched

loads, an will be the only incident wave, and the scat-

tered or reflected waves emerging from each port wi 11be,

from (8):

b2 = Sznan

Thus it is apparent that S.. k the refle(:tion coefficient

seen looking into the nth port, with a[l others termi-

nated in matched loads, while s~~(~ # fi’) represenf:s the

6 See L. A. Pipes, “Applied Mathematics for IEngineers & Physi-
cists, ” McGraw-Hill Book Publishing Co., Inc., New York, N. Y.; 1946.
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amplitude of the wave coupled out of the mth port for

a unit incident wave at port n, under the same matched

conditions. Since a normalized representation is being

used, the corresponding coupled power relation may be

written:

Pm (out) ;bmbm”— — smnsmn* = ] sm. )2. (12)
P. (in) – *a.a.* –

CONDITIONS IMPOSED UPON THE SCATTERING MATRIX

Inasmuch as a scattering matrix is intended to repre-

sent the properties of a ph~sical microwave junction,

certain relationships exist within the scattering matrix

as a result of the familiar laws of reciprocity and con-

servation of energy. Actually, the fact that the scatter-

ing matrix can be derived from the familiar impedance

or admittance matrix for the same junction assures that

this is so. This derivation can be developed2 from the

definition of the normalized component waves in (6) in

terms of terminal voltages and currents, to yield the

relationship:

s = (z – 1)(Z + l)-’ = (1 – I?)(I + Y)-’. (13)

A slightly modified form would result from the use of

non-normalized waves in (4).

The condition of reciprocity requires that the Z and

Y matrices be symmetrical, and consequently S must be

symmetrical from (13). This is represented by S~~ = S~~.

This is true, however, only for a normalized representa-

tion as in (6); the simplification which results from a

symmetrical scattering matrix is therefore the j ustifica-

tion for the normalization.

Conservation of energy as applied to a transmission

line junction may be expressed in a more general form

from Poynting’s energy theorem for a periodic fieldG as:

~ V.In* = 2P+ 4jco(WH – WE), (141
n

which in traveling-wave form, from (4), becomes

~ (an+ bn)(a.* - L$n*) = 2P+ 4~w(WH - w~), (15)
n

where P is the power dissipated in the junction, and

W’~ and WE are the average stored magnetic and electric

energies, respectively. The real part of (15) is:

z (a.a.” – b.b~”) = 2P. (16)

This may be expressed in matrix notation as:

~(1 — SS*)a* = 2P. (17)

The requirement that P z O imposes the condition:

det (1 – SS”) >0. (18)

For the special case of a lossless junction, which is

frequently approximated in practice, P = O, and

1–.W*=O (19)

8 Montgomery, Dicke and Purcell, op. cit., pp. 132, 139, 148.

or

s–l = S* = 3* (20)

This is the definition of what is known as a unitar~-

matrix, which has the special property that:

{

1 form = 72
Zshskn” = 8.. = o form # ,, (21)
~

For m =n, this becomes:

Zsmws’lrm” = ~ ]sKm]’ = 1, (22)
~

which can be identified from (12) as just the condition

for conservation of energy.

APPLICATIONS OF SCATTERING MATRICES

Section of Transmission Line

Suppose we wish to obtain the scattering matrix of a

two-port junction consisting of a section of uniform loss-

less transmission line of length L, as shown in Fig. 1.

I 2

I I

al — — az

b, — — bz

, I

> L-J
Fig. l—Transmission-line section.

This is assumed to be a continuation of a similar trans-

mission line connected to both pairs of terminals. The

terminal planes are defined as shown. From the previ-

ously-indicated solution to the general transmission-line

equations, it is apparent that al and b2 are related by a

simple factor of the form e–i~L, neglecting attenuation,

and similarly az and bl. In fact

b’ = e–~flLal and bl = e–~fiLaz, (23)

so that the scattering matrix equation is as follows:

(2)=(e:6L ‘TL)(2 (24)

From the simplicity of this result, it is apparent that

a change in the specified location of the terminal planes

of an arbitrary junction will affect only the phase of the

scattering coefficients of the junction. In particular, if

terminal-plane n is moved away from the junction a

distance L, each of the scattering coefficients S~n or S%~

involving n will be multiplied by the factor e–i~L, while

Sne will involve two such factors and will be changed by

a factor e–2~flL.

Lossless Two-Port Junction

Certain general statements can be made about any

lossless two-port junction, regardless of its form, merely

as a result of the conditions specified previously. Such

a junction may be a transition between two types of

transmission lines, as shown in Fig. 2 (opposite).
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From reciprocity and (22) we may write:

ls,ll’+ [s12]’= 1

[s2,1’+1s221’=1
.

S12= S’1. (25)

Consequently, we may immediately conclude that:

]s,,1 = ]s2,[. (26)

Thus it is apparent that the reflection coefficient is the

same looking into either terminal with a matched load

on the other, since under these conditions,

1 Is,,l 1+]s22]
~1=—+— (27)

1– I,S1lI ‘1– [s,21 ‘p’”

Furthermore, the fraction of the power reflected is:

conditions,

(-)bl
=s11 +

al ~ZX

\ U]/n, in

from which S,l, ] S1’I , and I I’~] can be determined by

(25).

Prefle.ted
= lsl, ]’,

Pin.ident

(28)

w-bile I he insertion loss due to reflection is given by:

This latter form is valid also for a Iossy junction, and

includes the dissipation loss.

However, the reciprocity relation S1’ = S’, still holds.

This case is typical of a resistive micrclwave network,

and is indicative of the fact that such a network may not

be equally well-matched in both directions, such as a

resistance card tapered on one end only.

Fig. 2—Waveguide to coax adapter.

If now a load with reflection coefficient l?’ is connected

to terminals 2,

rz=fl, or a’ = rzbj, (30)
b,

and (8) can be solved simultaneously to yield the input

reflection coefficient

(31)

These relations are also completely general, and hold for

a Iossy junction as well.

The use of a sliding mismatch for evaluating j unction

parameters is easily understood from the above rela-

tions. A sliding mismatch is merely a slightly mis-

matched termination whose reflection coefficient can be

varied, in phase only, by sliding along the transmission

line. From (31), it can be seen that as the phase of I’, is

changed, the input reflection coefficient will exhibit

maxima and minima corresponding to the in-phase and

out-of-phase conditions of the second term with respect

to Sll (it must be assumed that &I’z<<l). IJnder these

LOSSy Two-Po~t Junction

The scattering matrix for a 10SSY junction is not uni-

tary, so the relations (21) and (22) do not hold, but may

in general be replaced by:

~ IsKm[’ <l. (33)~

This is apparent from an extreme case suggested by

Fig. 3, consisting of a resistance and a large condenser

connected across a transmission line one-quarter wave-

length apart. If R= Z. and u C>>Z, the condense] will

appear like a short-circuited quarter-wave stub alu-oss

R, and will have very little effect; thus the junction will

appear well-matched at terminals 1 regardless of the

termination on 2, so S11<<1 and S12<<1. ‘The input at 2

will be essentially a short-circuit, regardless of the termi-

nation on 1, so ..’&= — 1 and S’1<<1. .Apparently, tlhen,

1--- x+-—----~
Fig. 3—Lossy two-port junction.

Multi-Po~t Lossless Junctions

An extension of the scattering representation to multi-

port junctions, together with full use of the reciprocity

theorem, the unitary relations of (21) as applicable to

a Iossless junction, and conditions resulting from physi-

cal symmetry, will lead to a remarkable array of rf’suits

without further information about the junction. The

degree of Iosslessness and symmetry are frequently suf-

ficient to justify the use of such assumptions, which

greatly simplify the analytical results.

.l very interesting application of these techniques can

be made with regard to a waveguide “lYIagic-Tee,” or

side-outlet tee.T This device consists of a combination of

T C. G. Montgomery, ‘{Technique of Microwave Measurements, ”
Radiation Lab. Ser., vol. 11, McGraw-Hill Boc~k Co., Inc., New
York, N. Y.; 1947.
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an E-plane and an H-plane waveguide tee arranged as

shown in Fig. 4. The properties of this junction may be

represented by a 4X4 scattering matrix, with a total of

16 terms. The number of independent terms is reduced

to 10 by the reciprocity relations. Furthermore, sym-

metry of the junction requires that SIS = .&, S1l = — S24,

and Sll = SZz, leaving the following seven terms:

From

(35),

~s,, s,, s,, s,, ]

S12 Sll S13 –s14

s, 3 s13 S33 S34 “

( S14 –s14 S34 S44 I

(35)

21) with m =3, n =4, and using the above matrix

S1J14* — S13S14* + S33S34* + S34S44* = 0“ (36)

AR).! I

Fig. 4—Waveguide magic-tee.

Since SJS and SM are inherently independent, this equa-

tion can be satisfied only with .&d= O, showing that there

is no direct cross-coupling between the side arms of the

tee. Because of this independence between the side arms,

separate matching structures may be employed in each

of these arms to produce (at least for a single frequency)

matched inputs (Sss = S1l = O). Under these conditions,

and with SM = O, applying (22) to the matrix (35) yields:

[sl, [2+ \s,,l’+ Is,,]’+ 1s,41’=1

21 S13[2= 1

21 S14]’= 1. (37)

From this we may conclude that \ SIJ I = 1.Sil I = l/~j,

and S11 = SZZ= Sl, = O. Thus matching of the side arms

automatically produces matching of the symmetrical

arms, as well as decoupling between them. These are the

conditions which are assumed to prevail in a truly

“magic” tee, also known as a bi-conj ugate network. The

scattering matrix thus reduces to,

/0011)

1 ‘o o 1–1/

z? 1100’

11–1 o Oj

assuming the proper choice of terminal planes.

(38)

Further use can be made of the scattering representa-

tion to evaluate, as in (31), the outputs from the various

arms with arbitrary terminations on each, as necessary

for understanding the performance of the unit under

actual operating conditions, such as for use in an im-

pedance bridge or a balanced mixer.

MEASURENIENT OF THE SCATTERING COEFFICIENTS OF.4

MICROWAVE JUNCTION

Measurement of the actual values of the scattering

matrix elements representing a particular microwave

junction, especially a multi-port junction, may be quite

difficult. The procedure usually used is basically the

same as that employed at lower frequencies, consisting

of measuring the input impedances or reflection co-

efficients at one or more ports with specified termina-

tions on the other. Substitution of the results of such

measurements into a set of equations similar to (31)

yields the desired parameters. The process of finding the

scattering coefficients is considerably simplified if well-

matched loads are available for all ports; this however,

may be an unknown condition in itself, especially in the

case of a transition from a measuring section to another

transmission line. A short-circuit termination may also

be used, since a good short-circuit may be easily

achieved in most t>-pes of transmission line; and if it is

located a specific distance from the actual terminal plane

of the junction, the short-circuit may be used to simu-

late any magnitude of reactive termination.

A procedure known as “Deschamps’ Method’’s,g has

been devised for measuring the scattering coefficients of

a two-port junction using four short-circuit termina-

tions separated a quarter-wavelength apart in pairs (or

alternatively, a sliding short-circuit set at these posi-

tions). Measurement of the input reflection coefficients

at one port only with each of the four terminations on

the other port are required, and the results are obtained

from a very simple graphical construction. The method

is easily applied to the direct measurement of unknown

impedances through such a junction, and may be ex-

tended to multi-port j unctions with additional measure-

ments. It also permits a simple evaluation of experi-

mental errors from the results of additional measure-

ments.

.knother method for the measurement of j unction

parameters which has been developed is known as the

“ Weissfloch Tangent” technique. 10 Its use results in the

more direct evaluation of the impedance matrix or the

equivalent circuit elements. The relative merits of the

two methods have been discussed elsewhere. 11

8 G. .4. Deschamps, “Determination of reflection coefficients and
insertion loss of a waveguide junction, ” Jour. Appl. Phys., vol. 24,
pp.1046–1050;.hgust, 1953.

9 J. E. Storer, L. S. Sheingold, and S. Stein, “A simple graphical
analysis of a two-port waveguide junction, ” PROC. IRE, vol. 41, pp.
1004–1013: August. 1953.

10 MarCuvit~, op. cit., pp. 130–138.
u L+ B. Felsen and A. A. Oliner–S. Stein, L. S. Sheingold, and

J. E. Storer, PROC. IRE, ,,01.42, pp. 1447-1448; September, 1954.


